0 CpxTRS
↳1 DependencyGraphProof (BOTH BOUNDS(ID, ID), 19 ms)
↳2 CpxTRS
↳3 NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTRS
↳5 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CpxWeightedTrs
↳7 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedTrs
↳9 CompletionProof (UPPER BOUND(ID), 0 ms)
↳10 CpxTypedWeightedCompleteTrs
↳11 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxTypedWeightedCompleteTrs
↳13 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳14 CpxRNTS
↳15 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CpxRNTS
↳17 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 140 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 12 ms)
↳22 CpxRNTS
↳23 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳24 CpxRNTS
↳25 IntTrsBoundProof (UPPER BOUND(ID), 139 ms)
↳26 CpxRNTS
↳27 IntTrsBoundProof (UPPER BOUND(ID), 48 ms)
↳28 CpxRNTS
↳29 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳30 CpxRNTS
↳31 IntTrsBoundProof (UPPER BOUND(ID), 221 ms)
↳32 CpxRNTS
↳33 IntTrsBoundProof (UPPER BOUND(ID), 58 ms)
↳34 CpxRNTS
↳35 FinalProof (⇔, 0 ms)
↳36 BOUNDS(1, n^1)
flatten(nil) → nil
flatten(unit(x)) → flatten(x)
flatten(++(x, y)) → ++(flatten(x), flatten(y))
flatten(++(unit(x), y)) → ++(flatten(x), flatten(y))
flatten(flatten(x)) → flatten(x)
rev(nil) → nil
rev(unit(x)) → unit(x)
rev(++(x, y)) → ++(rev(y), rev(x))
rev(rev(x)) → x
++(x, nil) → x
++(nil, y) → y
++(++(x, y), z) → ++(x, ++(y, z))
flatten(nil) → nil
rev(unit(x)) → unit(x)
flatten(++(unit(x), y)) → ++(flatten(x), flatten(y))
flatten(++(x, y)) → ++(flatten(x), flatten(y))
++(++(x, y), z) → ++(x, ++(y, z))
rev(nil) → nil
flatten(flatten(x)) → flatten(x)
flatten(unit(x)) → flatten(x)
++(x, nil) → x
++(nil, y) → y
flatten(nil) → nil
rev(unit(x)) → unit(x)
rev(nil) → nil
flatten(unit(x)) → flatten(x)
++(x, nil) → x
++(nil, y) → y
flatten(nil) → nil [1]
rev(unit(x)) → unit(x) [1]
rev(nil) → nil [1]
flatten(unit(x)) → flatten(x) [1]
++(x, nil) → x [1]
++(nil, y) → y [1]
flatten(nil) → nil [1]
rev(unit(x)) → unit(x) [1]
rev(nil) → nil [1]
flatten(unit(x)) → flatten(x) [1]
++(x, nil) → x [1]
++(nil, y) → y [1]
flatten :: nil:unit → nil:unit nil :: nil:unit rev :: nil:unit → nil:unit unit :: nil:unit → nil:unit ++ :: nil:unit → nil:unit → nil:unit |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
flatten
rev
++
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
nil => 0
++(z, z') -{ 1 }→ x :|: x >= 0, z = x, z' = 0
++(z, z') -{ 1 }→ y :|: y >= 0, z = 0, z' = y
flatten(z) -{ 1 }→ flatten(x) :|: x >= 0, z = 1 + x
flatten(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 1 + x :|: x >= 0, z = 1 + x
++(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
++(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
flatten(z) -{ 1 }→ flatten(z - 1) :|: z - 1 >= 0
flatten(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0
{ rev } { flatten } { ++ } |
++(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
++(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
flatten(z) -{ 1 }→ flatten(z - 1) :|: z - 1 >= 0
flatten(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0
++(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
++(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
flatten(z) -{ 1 }→ flatten(z - 1) :|: z - 1 >= 0
flatten(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0
rev: runtime: ?, size: O(n1) [z] |
++(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
++(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
flatten(z) -{ 1 }→ flatten(z - 1) :|: z - 1 >= 0
flatten(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0
rev: runtime: O(1) [1], size: O(n1) [z] |
++(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
++(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
flatten(z) -{ 1 }→ flatten(z - 1) :|: z - 1 >= 0
flatten(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0
rev: runtime: O(1) [1], size: O(n1) [z] |
++(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
++(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
flatten(z) -{ 1 }→ flatten(z - 1) :|: z - 1 >= 0
flatten(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0
rev: runtime: O(1) [1], size: O(n1) [z] flatten: runtime: ?, size: O(1) [0] |
++(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
++(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
flatten(z) -{ 1 }→ flatten(z - 1) :|: z - 1 >= 0
flatten(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0
rev: runtime: O(1) [1], size: O(n1) [z] flatten: runtime: O(n1) [1 + z], size: O(1) [0] |
++(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
++(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
flatten(z) -{ 1 + z }→ s :|: s >= 0, s <= 0, z - 1 >= 0
flatten(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0
rev: runtime: O(1) [1], size: O(n1) [z] flatten: runtime: O(n1) [1 + z], size: O(1) [0] |
++(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
++(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
flatten(z) -{ 1 + z }→ s :|: s >= 0, s <= 0, z - 1 >= 0
flatten(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0
rev: runtime: O(1) [1], size: O(n1) [z] flatten: runtime: O(n1) [1 + z], size: O(1) [0] ++: runtime: ?, size: O(n1) [z + z'] |
++(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
++(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
flatten(z) -{ 1 + z }→ s :|: s >= 0, s <= 0, z - 1 >= 0
flatten(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0
rev: runtime: O(1) [1], size: O(n1) [z] flatten: runtime: O(n1) [1 + z], size: O(1) [0] ++: runtime: O(1) [1], size: O(n1) [z + z'] |